GPU ENHANCED GRAPH MODEL BUILD AND SCORING ENGINE

Publication number: 20190005407
Abstract: Embodiments are directed to a method for accelerating machine learning using a plurality of graphics processing units (GPUs), involving receiving data for a graph to generate a plurality of random samples, and distributing the random samples across a plurality of GPUs. The method may comprise determining a plurality of communities from the random samples using unsupervised learning performed by each GPU. A plurality of sample groups may be generated from the communities and may be distributed across the GPUs, wherein each GPU merges communities in each sample group by converging to an optimal degree of similarity. In addition, the method may also comprise generating from the merged communities a plurality of subgraphs, dividing each sub-graph into a plurality of overlapping clusters, distributing the plurality of overlapping clusters across the plurality of GPUs, and scoring each cluster in the plurality of overlapping clusters to train an AI model.
Type: Application
Filed: June 30, 2017
Publication date: January 3, 2019
Inventors: Theodore D. Harris, Yue Li, Tatiana Korolevskaya, Craig O’Connell